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Abstract  

It is proved that  runaway solutions persist if Abraham' s  force - m ( ~  - r'K) is generalised 
by  adding to it a finite number  o f  te rms  which are linear in higher derivatives o f  ~'. The 
implicat ion o f  this result  to Eliezer's relativistic generalisation of  the  Lorentz-Dixac 
equat ion is discussed. 

The non-relativistic Abraham-Lorentz  equation of motion for a radiating 
charged particle 

2e2 "x'=- m ( ~ - -  r':~) ( t )  
Fext(t)  = mE - 3c--- T 

has runaway solutions or preaccelerated solutions (see, e.g., Erber, 1961, 
Jackson, 1962, Panofsky et aL, 1962, Rohrlich, t965),  t t  seems natural to add 
terms involving higher derivatives of  x (0  and see whether these runaway sol- 
utions disappear. After trying this unsuccessfully with a few terms, I arrived at 
the following theorem: 

Theorem: an equation of  motion of  the form 

Fext(t) = m a - r a  + . . .  + Cn 

N dna 
- m E Cn (2) 

n = o dtn 

will always have runaway solutions, where r > 0 and Cn(n >~ 2) are arbitrary 
real constants. 

This theorem tells us that if we seek a generalisation of equation (1) which 
does not  have runaway (or preaccelerated) solutions, we should either add an 
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infinite number of  linear terms in the velocity and its derivatives or add non- 
linear terms in the velocity and its derivatives. 

An example of  a linear generalisation of  equation (1) which does not  have 
runaway solutions is provided by the quasi-stationary approximation (Erber, 
1961, Herglotz, 1903, Wildermuth, 1955) for the extended Lorentz election: 

e 2 
Fext(t) = 3~o2C [x (t)  - 5¢ (t - 2ro/c)] 

2 e 2 2 e 2 e 2 ~ "  
. . . . . . .  5i - -~ c3 ~c'- 3ro2c Z ,  ( - 2 r ° / c ) n / n !  dn~c(t) a t  n (3)  

3 ro c2 n=3 

Our theorem tells us that breaking this series after a finite number o f  terms 
will introduce runaway solutions. It thereby illustrates the fact that pertur- 
bation expansions to any order could lead to formally unphysical results even 
though the exact expression is formally physical.t 

Non-linear generalisations of  (1) are given by the relativistic Lorentz-Dirac 
equation (Dirac, 1938). 

2 e 2 u(1)~u~) 
(Fext)a(s) = mu(~ 1) - -~ 7 (u(2) + (4) 

and its generalisation by Eliezer (1947). 

2 12 2 e - r , ( 2 ) + u  ( )  u~) 
(Fext)a(s) = mu(~ 1) - -~ c 3 , "a  

+ ~ B2n[Li (2n+1) -- (Ll, u(2n+l))Hc~ -- ((U, U (2n)) 
r l = l  

+ (--1)n(u (n-l), u(n-- l ) )  + ½ (-- 1)nu(n)2}U(1)] 

(5) 

where, B2n are arbitrary constants, (Fext)a the external Minkowski force, 
u(a n) the nth derivatives of the four.velocity us  with respect to the proper 
time s, and (a, b) - aobo - a .  b. Equation (4), whose non.relativistic limit 
(where only linear terms in v and its derivatives are kept) is given by equation 
(1), has runaway solutions.~ However, it is not  known in general whether 
Eliezer's equation (5) wi th f in i t e  number of  terms (B2n = 0 for n > N)  will 
also have runaway solutions. By the above theorem, it will certainly have 

1" There are also examples where just the opposite happens: sometimes perturbation 
expansions are more physical than the exact solutions. For example, some wave equations 
for spins s = -~ with electromagnetic interactions have accausal exact solutions, but their 
perturbation expansions are causal to all orders (Velo, 1972, Velo et al., 1971); the 
accausatity here means v > c and is different from ours, which is associated with pre- 
acceleration. I would like to thank H. Bixitz for the above reference. 

$ Runaway solutions of the relativistic equations correspond to the Minkowski 
velocity u reaching infinity, and thus the usual velocity v = (1 + (u/c)2)-l/2u approaching 
the speed of light as t ~ oo. 
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runaway solutions in the non-relativistic limit, It is not  clear, however, whether 
this fact implies the existence o f  runaway solutions in the relativistic case as 
well. 

Proof  o f  the theorem: Since equation (2) is linear, it will have runaway or 
preaccelerated solutions under the action of  external force, if it has a runaway 
solution for the homogeneous case. Hence, it is enough to prove that 

N dna 
0 =  • en (6) 

n =o dt  n 

has a runaway solution. Substituting 

a(t) = A e - i w t  (7) 

into equation (6) gives 

0 = 1 - r ( - i c o )  + . . .  + CN(--iw) N ~ f ( w )  (8) 

Factorising the polynomial f(co) gives 

N 
f(co) =CN(- i )  N YI (co - COn) 

n : l  

=CN(--i)  N ~ (--COn). 1 - -  _ I_ I ]CO+. . .  (9) 
n=, \ ~ c o n ]  

Comparing the linear term in co in equations (8) and (9) gives 
$ 

(i0) 
I~on 12 

where the last step follows from f ( - ¢ o * )  = f*(¢o),  which tells us that the zeros 
of f (co)  are either pure imaginary w = i Im ~o, or occur in pairs w_+ = -+ Re co + i 
Im co. Since T > 0, the sum Z Im COn/I co n [2 cannot be positive, unless at least 
one Im ~o n is positive. Such an con leads to a runaway solution when sub- 
stituted into (7). 
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